Abstract

As a photocatalyst, barium titanate (BaTiO3) has shown a great potential in photocatalytic water splitting for hydrogen evolution. In this work, BaTiO3 nanoparticles were synthesized at room temperature conditions under ambient pressure. The small particle size below 10 nm plays a key role in suppressing the recombination of photo-induced carriers, and thus promoting the photocatalytic activity. The photocatalytic hydrogen evolution rates of BaTiO3 (BTO-R) synthesized at room temperature are 8 and 2.9 times that of commercial BaTiO3 (BTO-C) in the presence and absence of triethanolamine (TEOA) as a sacrificial agent, respectively. This work provides a good example on size control, low-cost synthesis and photocatalysts' design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.