Abstract

This paper presents a study of the growth of nanoporous anatase and rutile phases of titanium dioxide (TiO2) subjected to electrochemical anodization at room temperature without post-thermal treatment, using sulfuric acid as the electrolyte. Effects of the applied voltage on the morphological, structural, and photoelectrochemical (PEC) properties were examined. Images from field emission scanning electron microscopy reveal that pore size could be manipulated by changing the anodization voltage. In addition, X-ray diffraction (XRD) results indicate that anatase and rutile phases of TiO2 appeared in samples subjected to minimum anodization voltages of 100V and 150V. The Scherrer method was used to calculate the mean crystallite size, and the interplanar d-spacing formula was used to obtain the in-plane and out-of-plane strains. XRD measurements reveal that the amount of anatase and rutile crystallinity and their mean crystallite sizes were affected significantly by the anodization voltage. Results of the PEC studies reveal that the photocurrent density and photoconversion efficiency increased with increasing anodization voltage. In addition, the synthesized nanoporous TiO2 showed stable photoresponse where only a small decay of photocurrent density is observed in numerous on-to-off illumination cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.