Abstract
In the present study, we have synthesized undoped and Cu2+-doped CdO nanopowders by a mild solution method at room temperature. Powder X-ray diffraction, optical absorption, electron paramagnetic resonance and Fourier transform infrared measurements are used to characterize prepared powders. The powder X-ray diffraction patterns reflect the cubic crystal structure for undoped and Cu2+-doped CdO powders. Surface morphology images and compositional features are studied by scanning electron microscopy and energy-dispersive X-ray techniques, respectively. The optical absorption spectra exhibit a single absorption band for Cu2+-doped sample, which is the characteristic absorption band of distorted octahedral site symmetry. By correlating the electron paramagnetic resonance and optical results for Cu2+-doped CdO nanopowder, bonding parameters are evaluated. These values indicate the partial covalency of in-plane σ (α2) and in-plane π bonding (\( \beta_{1}^{2} \)) between copper ions and their ligands. The FT-IR spectra indicate the fundamental vibrations of Cd–O.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.