Abstract

A potential experimental system, based on the Silicon Nitride (SiN) material, is proposed to generate steady-state room-temperature optomechanical entanglement. In the proposed structure, the nanostring interacts dispersively and reactively with the microdisk cavity via the evanescent field. We study the role of both dispersive and reactive coupling in generating optomechanical entanglement, and show that the room-temperature entanglement can be effectively obtained through the dispersive couplings within the reasonable experimental parameters. In particular, we find, in the high Temperature ($T$) and high mechanical qualify factor ($Q_{m}$) limit, the logarithmic entanglement depends only on the ratio $T/Q_{m}$. This means that improvements in the material quantity and structure design may lead to more efficient generation of stationary high-temperature entanglement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.