Abstract

Catalyst-free growth of ZnO nanowires using reactive magnetron sputtering at room temperature is reported. We discuss the growth of the nanowires using reactive magnetron sputtering as a function of argon and oxygen flow values changing at a set ratio of 10:2. A transition from nanostructured Zn to nanowire ZnO growth is observed at 20 sccm Ar and 4 sccm O2. Densification and improved alignment of the nanowires is visible for increasing flow values up to 50 sccm Ar and 10 sccm O2. Nanowires exhibit stacking fault regions of zinc blende ZnO in wurtzite ZnO. The regions encompass the whole width of the nanowires and their quantum well behavior is manifested in the photoluminescence spectra. The nanowires were subsequently deposited on paper and PET substrates and electromechanical nanogenerators were fabricated. Manual pressing and depressing of the devices induced voltages of 50 μV and 2 μV for the devices on PET and paper substrates, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.