Abstract

Electrical spin injection into and spin extraction from a wide-bandgap semiconductor SiC at room temperature were demonstrated via Schottky junctions. The spin relaxation time of SiC could reach 300 ps, overwhelming that of Si with similar carrier density due to the smaller atomic number. We also found that there existed two channels in SiC/CoFeB Schottky junctions for spin relaxation, one from bulk SiC and the other from interfacial defect states within the barrier whose spin relaxation times were about 1 ns. The bias condition controlled transport channels via bulk or defect states within the barrier and then affected the effective spin relaxation process. Realization of spin injection into SiC shed light on spintronics of wide-bandgap semiconductors such as spin-resolved blue light emitting diodes and high power/temperature spintronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.