Abstract

A highly unusual solid-state epitaxy-induced phase transformation of Na4 SnS4 ⋅ 14H2 O (I) into Na4 Sn2 S6 ⋅ 5H2 O (II) occurs at room temperature. Ab initio molecular dynamics (AIMD) simulations indicate an internal acid-base reaction to form [SnS3 SH]3- which condensates to [Sn2 S6 ]4- . The reaction involves a complex sequence of O-H bond cleavage, S2- protonation, Sn-S bond formation and diffusion of various species while preserving the crystal morphology. In situ Raman and IR spectroscopy evidence the formation of [Sn2 S6 ]4- . DFT calculations allowed assignment of all bands appearing during the transformation. X-ray diffraction and in situ 1 H NMR demonstrate a transformation within several days and yield a reaction turnover of ≈0.38 %/h. AIMD and experimental ionic conductivity data closely follow a Vogel-Fulcher-Tammann type T dependence with D(Na)=6×10-14 m2 s-1 at T=300 K with values increasing by three orders of magnitude from -20 to +25 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.