Abstract
The monodisperse Cu-Ag core-shell nanoparticles (Cu@Ag NPs) for electric conductive inks were successfully prepared by a simple two-step process consisting of thermal decomposition and galvanic displacement. It was found that 20 mol.% coverage of Ag enabled Cu@Ag NPs oxidation resisting with air. A new approach to achieve coalescence and sintering of Cu@Ag NPs at room temperature was proposed. 1-amino-2-propanol (MIPA), hydrophilic amine with a short C-chain, was first applied to replace the strong stabilizer, the strong stabilizer oleylamine (OAM) adsorbed on particles, thereby obtained preliminary agglomeration and hydrophobic -to- hydrophilic transition to improve the wetting capability of electrolyte solution on the surface of metal film. Then, the reducing electrolyte NaBH4 solution was used as the destabilizing agent to deeply coalesce particles, and also inhibit the electrochemical corrosion. It takes only a few minutes to achieve sintering in air at room temperature. Due to the effective sintering at room temperature, the conductive patterns could be formed on thermo-sensitive substrates. The eventual resistivity was found to be as low as 36.3 μΩ·cm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.