Abstract

Single-photon terahertz (THz) detection is one of the most demanding technologies for a variety of fields and could lead to many breakthroughs. Although significant progress has been made in the past two decades, operating it at room temperature still remains a great challenge. Here, we demonstrate, for the first time, a room temperature THz detector at single-photon levels based on nonlinear wave mixing in thermal Rydberg atomic vapor. The low-energy THz photons are coherently upconverted to high-energy optical photons via a nondegenerate Rydberg state involved in a six-wave mixing process, and therefore, single-photon THz detection is achieved by a conventional optical single-photon counting module. The noise equivalent power of such a detector reaches 9.5 × 10−19 W/Hz1/2, which is more than four orders of magnitude lower than the state-of-the-art room temperature THz detectors. The optimum quantum efficiency of the whole-wave mixing process is about 4.3%, with 40.6 dB dynamic range, and the maximum conversion bandwidth is 172 MHz, which is all-optically controllable. The developed fast and continuous-wave single-photon THz detector at room temperature operation has a great potential for portability and chip-scale integration, and could be revolutionary for a wide range of applications in remote sensing, wireless communication, biomedical diagnostics, and quantum optics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.