Abstract
We report experimental results of two room-temperature single photon sources with definite polarization based on emitters embedded in either cholesteric or nematic liquid crystal hosts. In the first case, a cholesteric 1-D photonic bandgap microcavity provides circular polarization of definite handedness of single photons from single colloidal semiconductor quantum dots (nanocrystals). In these experiments, the spectral position of the quantum dot fluorescence maximum is at the bandedge of a photonic bandgap structure. The host does not destroy fluorescence antibunching of single emitters. In the second case, photons with definite linear polarization are obtained from single dye molecules doped in a planar-aligned nematic liquid crystal host. The combination of sources with definite linear and circular polarization states of single photons can be used in a practical implementation of the BB84 quantum key distribution protocol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.