Abstract

For the purpose of heterointegration of Si-based group IV semiconductor quantum effect devices into Si large-scale integrated circuit, formation of atomically flat heterointerfaces in quantum heterostructure by lowering Si barrier growth temperature was investigated in order to improve negative differential conductance (NDC) characteristics of high-Ge-fraction strained Si1-xGex/Si hole resonant tunneling diode. It was found that roughness generation at heterointerfaces is drastically suppressed by utilizing, Si barriers with nanometer order thickness deposited using Si2H6 reaction at a lower temperature of 400oC instead of SiH4 reaction at 500oC after the Si0.42Ge0.58 growth. NDC characteristics show that difference between peak and valley currents is effectively enhanced at 11-295K by using Si2H6 at 400oC, compared with that using SiH4 at 500oC. Thermionic-emission dominant characteristics at higher temperatures above 100 K indicates a possibility that introduction of larger barrier height (i.e., larger band discontinuity) enhances the NDC at room temperature by suppression of thermionic-emission current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.