Abstract

For accelerating the development of GaN power-switching devices, current knowledge on the origins and dynamic properties of the major intrinsic nonradiative recombination centers (NRCs) in Mg-doped GaN (GaN:Mg) are reviewed, as lightly to heavily doped p-type planar GaN segments are required but certain compensating defects including NRCs hinder their formation. The results of complementary time-resolved photoluminescence and positron annihilation spectroscopy measurements on the epitaxial and ion-implanted GaN:Mg formed on low dislocation density GaN substrates indicate the following: major intrinsic NRCs are the clusters of Ga vacancies (VGas) and N vacancies (VNs), namely VGa(VN)2 in the epitaxial GaN:Mg and (VGa)3(VN)3 in the ion-implanted GaN:Mg after appropriate thermal annealings. The minimum electron capture-cross-sections of VGa(VN)2 and (VGa)3(VN)3 are commonly the middle of 10−13 cm2 at 300 K, which is approximately four times larger than the hole capture-cross-section of the major intrinsic NRCs in n-type GaN, namely VGaVN divacancies, being 7 × 10−14 cm2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call