Abstract

The development of molecular crystalline materials with efficient room-temperature phosphorescence has been obtained much attention due to their fascinating photophysical properties and potential applications in the fields of data storage, bioimaging and photodynamic therapy. Herein, a new co-crystal complex [(DCPA) (AD)2] (DCPA = 9,10-di (4-carboxyphenyl)anthracene; AD = acridine) has been synthesized by a facile solvothermal process. Crystal structure analysis reveals that the co-crystal possesses orderly and alternant arrangement of DCPA donors and AD acceptors at molecular level. Fixed by strong hydrogen bonds, the DCPA molecule displays seriously twisty spatial conformation. Density functional theory (DFT) calculations show well separation of HOMO and LUMO for this co-crystal system, suggesting the efficient triplet excitons generation. Photoluminescence measurements show intensive cyan fluorescence (58.20 ns) and direct white phosphorescence (325 µs) emission at room-temperature. The transient current density–time curve reveals a typical switching electric response under the irradiation of simulated light, reveal that the [(DCPA) (AD)2] co-crystal has a high photoelectric response performance.

Highlights

  • The crystal structure and density functional theory (DFT) calculations reveal that the di (4-carboxyphenyl)anthracene (DCPA) molecule fixed by strong hydrogen bonds displays seriously twisty spatial conformation

  • High-grade light yellow block single crystals of the twocomponent [(DCPA) (AD)2] co-crystal were synthesized under the solvothermal condition from the mixture of DCPA and AD (Figure 1A) with a 1:2 stoichiometry in ethanol solution

  • By the addition of −0.5 V bias potential, it generates more large current of about −46.5 μA cm−2 under light radiation (Figure 5D). All these results reveal that the [(DCPA) (AD)2] co-crystal has superior photoelectric response performance, which can be applied in the future photoelectric detector device

Read more

Summary

INTRODUCTION

The rational design of molecular crystalline materials with long-lived room-temperature phosphorescence (RTP) has atracted tremendous attentions owing to their extended potential to create new opportunities in the development of photocatalytic reactions, photodynamic therapy, optical storage, organic light emitting diodes, and bioimaging (Bhattacharjee and Hirata, 2020; Jiang et al, 2018; Gao and Ma, 2021; Hirata, 2019; Gu et al, 2019; Lei et al, 2019; Wang et al, 2020; Wang et al, 2021; Li and Li, 2020; Yang et al, 2019; Yang et al, 2020; Gao et al, 2021; Chen et al, 2021). Many single component organic molecules with twisted donor-acceptor spatial conformation have been demonstrated as efficient RTP materials (Xiao et al, 2020; Xu et al, 2021). One new type of co-crystal [(DCPA) (AD)2] has been obtained under solvothermal conditions by the selection of 9,10-di (4-carboxyphenyl)anthracene (DCPA) electron donor and acridine (AD) electron acceptor. The crystal structure and density functional theory (DFT) calculations reveal that the DCPA molecule fixed by strong hydrogen bonds displays seriously twisty spatial conformation. This structure feature affords well separation of HOMO-LUMO, promoting for the generation of triplet excitons. IR (KBr pellet, cm−1): 3,415(w), 3,054(w), 1,947(w), 1,692(s), 1,607(m), 1,572(m), 1,524(m), 1,440(m), 1,401(m), 1,281(s), 1,100(m), 920(m), 853(w), 774(s), 735(s), 673(m), 505(m)

RESULTS AND DISCUSSION
CONCLUSION
DATA AVAILABILITY STATEMENT
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.