Abstract

In this study, we report a comprehensive time-resolved spectroscopic investigation of the excited-state deactivation mechanism in three push-pull isomers characterized by a phenothiazine electron donor, a benzothiazole electron acceptor, and a phenyl π-bridge where the connection is realized at the relative ortho, meta, and para positions. Spin-orbit charge-transfer-induced intersystem crossing takes place with high yield in these all-organic donor-acceptor compounds, leading also to efficient production of singlet oxygen. Our spectroscopic results give clear evidence of room-temperature phosphorescence not only in solid-state host-guest matrices but also in highly biocompatible aggregates of these isomers produced in water dispersions, as rarely reported in the literature. Moreover, aggregates of the isomers could be internalized by lung cancer and melanoma cells and display bright luminescence without any dark cytotoxic effect. On the other hand, the isomers showed significant cellular phototoxicity against the tumor cells due to light-induced reactive oxygen species generation. Our findings strongly suggest that nanoaggregates of the investigated isomers are promising candidates for imaging-guided photodynamic therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.