Abstract

Oxidation of HF vapor-etched nanocrystalline silicon films, prepared by drop coating from nanocrystalline Si sol in acetonitrile, was studied. Oxidation of nanocrystalline silicon at room temperature in air with 5% and 86% relative humidity was observed by means of infrared spectroscopy for 2 days. The change in film mass after 15 h of oxidation was determined using quartz crystal microbalance. In dry air, film mass and integral intensity of bands attributed to vibrations in Si3 − x–Si–Hx and Si–O–Si groups changed linearly with time. In humid air, intensity of in Si3 − x–Si–Hx band decays exponentially and intensity of Si–O–Si band increases as a square root of oxidation time. Film mass gain after 15 h of oxidation corresponds to an average oxide layer thickness of 0.02 nm in dry air and 0.51 nm in wet air.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.