Abstract

Compact and coherent source is a key component for various applications of the terahertz (THz) wave. We report on our recent results of THz oscillators using resonant tunneling diodes (RTDs). To achieve high-frequency oscillation, the electron delay time of RTD was reduced with a narrow quantum well and an optimized collector spacer thickness. Conduction loss at the air bridge connecting RTD and slot antenna, which works as a resonator and a radiator, was also reduced. By these structures, a fundamental oscillation up to 1.92 THz was obtained at room temperature. Theoretical calculation shows that an oscillation over 2 THz is further expected by improved structures of RTD and antenna. Using the offset slot antenna and two-element array configuration, high output power of 0.61 mW was obtained at 620 GHz. A direct intensity modulation of RTD oscillators up to 30 GHz, which is useful for high-speed wireless data transmission, was demonstrated. By the integration of a varactor diode, wide frequency sweep of 580–700 GHz in a single device and 580–900 GHz in a four-element array were also demonstrated. This result expands possible applications of RTD oscillators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.