Abstract

Highly ordered nanotubes of 5, 10, 15, 20-tetrakis(4-aminophenyl)porphyrin zinc (ZnTAP) are fabricated by using nanoporous anodized aluminum oxide (AAO) membrane as the template. Electronic absorption spectra, fluorescence spectra, transmission electron microscope (TEM), scanning electronic microscopy (SEM), low-angle X-ray diffraction (XRD) techniques are adopted to characterize these nanotubes. The highly ordered nanotubes of ZnTAP show good conductivity and present an efficient gas sensor platform for the ultrasensitive detection of NO2 under room temperature. The proposed sensor shows high sensitivity, reproducibility and fast response/recovery behavior, and provides a promising avenue for improving the sensing performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.