Abstract
Paper electronics have been fast developed in recent years due to their degradability and recyclability; however, most of them are barely equipped with logic functions, impeding them from becoming autonomous on-paper systems. To provide a working unit for logic implementations, a paper field-effect transistor (FET) with a clay-graphite channel that demonstrated negative differential resistance (NDR) is fabricated in this study. The device exhibited a p-type semiconductor characteristic with an optical bandgap of ∼1.97 eV according to photoluminescence analysis, resulting from considerable defective graphite mixed with clay in the channel. Considering that the NDR behavior is theoretically predicted to be tunable by the contact resistance, we fabricated FETs with different contact resistances and observed that the NDR behavior occurred in devices with relatively lower contact resistance. The NDR effect is also tunable by varying the gate voltage, which matches well with simulation results. The possible mechanism for the NDR behavior is the decrease in carrier drift velocity induced by band-to-band tunneling, associated with impurities-induced trapping states and gate-induced confined states. This work provides a promising and easy pathway to develop digital components using paper electronics in the near future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.