Abstract

AbstractAs an alternative to the brittle and expensive indium tin oxide (ITO) transparent conductor, a very simple, room‐temperature nanosoldering method of Ag nanowire percolation network is developed with conducting polymer to demonstrate highly flexible and even stretchable transparent conductors. The drying conducting polymer on Ag nanowire percolation network is used as a nanosoldering material inducing strong capillary‐force‐assisted stiction of the nanowires to other nanowires or to the substrate to enhance the electrical conductivity, mechanical stability, and adhesion to the substrate of the nanowire percolation network without the conventional high‐temperature annealing step. Highly bendable Ag nanowire/conducting polymer hybrid films with low sheet resistance and high transmittance are demonstrated on a plastic substrate. The fabricated flexible transparent electrode maintains its conductivity over 20 000 cyclic bends and 5 to 10% stretching. Finally, a large area (A4‐size) transparent conductor and a flexible touch panel on a non‐flat surface are fabricated to demonstrate the possibility of cost‐effective mass production as well as the applicability to the unconventional arbitrary soft surfaces. These results suggest that this is an important step toward producing intelligent and multifunctional soft electric devices as friendly human/electronics interface, and it may ultimately contribute to the applications in wearable computers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.