Abstract

Polycrystalline rare-earth-substituted Bi5Ti3Fe0.7Co0.3O15 (BReFCT (Re = La, Nd and Ho)) ceramics were prepared by conventional solid-state reaction. The main four-layered Aurivillius structure was confirmed in the as-prepared ceramics by X-ray diffraction and Raman spectra analysis though a small amount of secondary phase consisting of magnetic Co and Fe elements was detected by SEM/EDS. The observed ferromagnetic behavior and magnetoelectric coupling response were attributed to the main Aurivillius phase. A maximum ME coefficient of 31.58 mVcm−1Oe−1 was achieved in BLaFCT ceramics. The magnetic and magnetoelectric coupling properties in BReFCT ceramics were discussed based on the radius difference of the rare earth ions and the induced distorted lattice structure. The enhanced magnetoelectric properties of the BReFCT ceramics are promising for novel magnetoelectric device applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call