Abstract

Multiferroics that simultaneously exhibit ferroelectricity and ferromagnetism have recently attracted great attention due to their potential application in next generation electronic devices. However, only a few single-phase multiferroic materials exhibit ferroelectric and ferromagnetic orders at room temperature. Recently, some bismuth layer-structured Aurivillius compounds were reported as multiferroics at room temperature, but the origin of their magnetic property is still under debate because the net magnetization may originate from the presence of secondary phases that are not easily detected by laboratory XRD diffractometers. Here, textured Aurivillius phase Bi5.25La0.75FeCoTi3O18 ceramics were prepared by Spark Plasma Sintering. The ferromagnetic character of the ceramics was indicated by the magnetic field-induced reversible intensity changes of a certain set of crystalline planes belonging to the Aurivillius phase, as measured by in situ neutron diffraction under the applied magnetic field. The first principles calculations indicate that the ferromagnetism originates from double exchange interactions Fe3+–O–Fe3+, Co3+–O–Co3+, and Fe3+–O–Co3+ in the ferro-toroidal main phase. The magnetic-controlled ferroelectric domain switching was observed by piezoelectric force microscopy at room temperature. The prepared Aurivillius phase ceramics, with Co/Fe contributing to magnetization and polarization at the same time, can be considered an intrinsic room-temperature multiferroic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.