Abstract

Efficient resonant excitonic waveguiding is achieved in laser structures, grown by metallorganic chemical vapor deposition, with stacked CdSe quantum islands which were separated by ternary ZnSSe barriers. Plastic relaxation within the stack is shown to be suppressed by adjusting the sulfur content in the barriers to compensate the strain. Excitonic lasing with low threshold intensities is demonstrated well above room temperature with Ith77 K=0.8 kW/cm2 and Ith300 K=55 kW/cm2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.