Abstract
Additional functionalities on semiconductor microchips are progressively important in order to keep up with the ever-increasing demand for more powerful computational systems. Monolithic III–V integration on Si promises to merge mature Si CMOS processing technology with III–V semiconductors possessing superior material properties, e.g., in terms of carrier mobility or band structure (direct band gap). In particular, Si photonics would strongly benefit from an integration scheme for active III–V optoelectronic devices in order to enable low-cost and power-efficient electronic–photonic integrated circuits. We report on room-temperature lasing from AlGaAs/GaAs microdisk cavities monolithically integrated on Si(001) using a selective epitaxial growth technique called template-assisted selective epitaxy. The grown gain material possesses high optical quality without indication of threading dislocations, antiphase boundaries, or twin defects. The devices exhibit single-mode lasing at T < 250 K and lasing thresholds between 2 and 18 pJ/pulse depending on the cavity size (1–3 μm in diameter).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.