Abstract

Hydrogen has the potential to be an alternative source of energy. However, most of the research on hydrogen storage carried out in the past is based on low temperature (<80 K) whereas storage near room temperature is desired. Here, we report room-temperature hydrogen storage capacity of defective single-walled carbon nanotubes (SWCNT) investigated using molecular dynamics simulations and density functional theory. Four different types of defective SWCNTs are considered to study room temperature hydrogen storage. We observed maximum adsorption capacity of SWCNT with 5 and 8-membered ring defects, namely, D1. The SWCNT with other three defects studied here, Stone-Wales with 5- and 7-membered ring defect (D2), 5-membered ring defect (D3), and 3-, 5- and 8-membered ring defect (D4) have negative adsorption effect compared to the defect-free SWCNT. The highest gravimetric capacity of 1.82 wt.% is found for the D1 defective SWCNT at room temperature, 298 K and 140 atm. The DFT calculations show that hydrogen adsorption strongly depends on the type of defect where the 8-membered ring has the highest adsorption energy and the 3-membered ring has the lowest adsorption energy. A combination of 5- and 8-membered defective rings can increase hydrogen adsorption significantly even at room temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call