Abstract

AbstractRecently, precise detection of VOCs in particular acetone, ammonia alcohol has attracted huge attention for industrial safety, monitoring of environment and human health. In this article we have reported for a polypyrrole nanotube (PPNT)‐based chemiresistive sensor for the selective detection of trace acetone vapour at room temperature (25 °C). Polypyrrole (PPy) nanoparticles with different morphologies, viz. nanotubes, nanowire, and globular were synthesized using methyl orange (MO), cetyltrimethyl ammonium bromide (CTAB), and pure polypyrrole as the growth template. The as synthesized powders were exploited to fabricate Taguchi‐type thick‐film sensors. The synthesized powders and fabricated sensors were characterized by multiple sophisticated techniques, such as, XRD, FTIR, Raman spectroscopy, SEM, EDS, UV‐VIS spectroscopy, optical non‐contact profilometry, and current‐Voltage (I‐V) measurement. It is observed that the PPNT sensor shows the highest response to trace acetone vapour with a lower detection limit of 500 ppb at room temperature (25 °C) and quick response (∼5.4 sec) and recovery (∼73.94 sec) times. Achieved enhanced sensing behaviour can be attributed to formation of hydrogen bond between acetone and PPy. Combined with room temperature sensing, good stability, repeatability, produce sensor may find application in various sensing fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call