Abstract
The two-dimensional electron gas (2DEG) formed at the interface between SrTiO3 (STO) and LaAlO3 (LAO) insulating layer is supposed to possess strong Rashba spin-orbit coupling. To date, the inverse Edelstein effect (i.e., spin-to-charge conversion) in the 2DEG layer is reported. However, the direct effect of charge-to-spin conversion, an essential ingredient for spintronic devices in a current-induced spin-orbit torque scheme, has not been demonstrated yet. Here we show, for the first time, a highly efficient spin generation with the efficiency of ∼6.3 in the STO/LAO/CoFeB structure at room temperature by using spin torque ferromagnetic resonance. In addition, we suggest that the spin transmission through the LAO layer at a high temperature range is attributed to the inelastic tunneling via localized states in the LAO band gap. Our findings may lead to potential applications in the oxide insulator based spintronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.