Abstract
There is an increasing need to develop conducting hydrogels for bioelectronic applications. In particular, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hydrogels have become a research hotspot due to their excellent biocompatibility and stability. However, injectable PEDOT:PSS hydrogels have been rarely reported. Such syringe-injectable hydrogels are highly desirable for minimally invasive biomedical therapeutics. Here, an approach is demonstrated to develop injectable PEDOT:PSS hydrogels by taking advantage of the room-temperature gelation property of PEDOT:PSS. These PEDOT:PSS hydrogels form spontaneously after syringe injection of the PEDOT:PSS suspension into the desired location, without the need of any additional treatments. A facile strategy is also presented for large-scale production of injectable PEDOT:PSS hydrogel fibers at room temperature. Finally, it is demonstrated that these room-temperature-formed PEDOT:PSS hydrogels (RT-PEDOT:PSS hydrogel) and hydrogel fibers can be used for the development of soft and self-healable hydrogel bioelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.