Abstract

Using first-principle calculations, the magnetic properties of the monovacancies and the Sb-related defects including VZn, VO, SbZn, SbO, SbZn-VZn and SbZn-2VZn are studied. It is found that the isolated VZn with the charge state of 0 and −1 can contribute to ferromagnetism in ZnO material. The substitution of Sb on O sites (SbO0) also results in magnetic property. Moreover, the SbZn-2VZn complex is another defect having non-zero magnetic moment and energetically favors for the ferromagnetic state. The resultant density of states (DOS) and spin density distribution clearly show that the ferromagnetic interaction is majorly due to the O-p Zn-d and Sb-p states. To check this calculation, Sb-doped ZnO samples were grown by pulsed laser deposition with different Sb composition under P(O2) = 1.3 Pa. SQUID study showed that all of these samples are ferromagnetic at room temperature. The variation of the saturation magnetization against the Sb composition is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.