Abstract
Colloidal semiconductor ternary CdTeS magic-size clusters (MSCs) have not been reported. Here, we present the first synthesis of CdTeS MSCs at room temperature and our understanding of the evolution pathway. The MSCs exhibit sharp optical absorption peaking at 381 nm and are labeled MSC-381. CdTeS MSC-381 evolves when pre-nucleation-stage samples of binary CdTe and CdS that do not contain quantum dots (QDs) are separately prepared and then mixed and incubated at room temperature. We propose that CdTeS MSC-381 evolves from its precursor compound (PC) via quasi-isomerization. Synchrotron-based small-angle X-ray scattering suggests that PCs/MSCs of CdTe and CdTeS are similar in sizes. We propose further that the CdTeS PC forms from the substitution reaction between the CdTe PC and the CdS monomer/fragment (Mo/Fr). The present study paves the way to the room-temperature evolution of ternary MSCs and provides an in-depth understanding of the PC to MSC transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.