Abstract

The coordination mechanism of chloroaluminate species in aluminum chloride (AlCl3) solutions in γ-butyrolactone (GBL) is investigated using electrochemical, spectroscopic, and computational methods. The liquid-state 27Al NMR spectroscopy shows a sequence of new species generated in the AlCl3-GBL solutions with increasing AlCl3/GBL ratio. Ab initio molecular dynamics simulation reveals the dynamic coordination process between GBL and AlCl3, and the resultant chloroaluminate species are identified as [AlCl2·(GBL)2]+, AlCl4-, AlCl3·GBL, and Al3Cl10-. The species are further confirmed by surface enhanced Raman spectroscopy combined with calculated Raman spectra from methods based on density functional theory. Electrochemical deposition of Al is achieved from the AlCl3-GBL solution containing Al3Cl10-, which is one of the few noneutectic electrolytes for room-temperature Al deposition reported to date.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.