Abstract

Hetero-epitaxial growth of high quality InP on a complementary metal-oxide-semiconductor (CMOS)-compatible Si platform is compelling for monolithic integration of optoelectronics. It will provide the combined strength of mainstream mature InP-based photonic integrated circuits (PIC) technologies and large-volume, low-cost silicon-based manufacturing foundries. Direct monolithic integration of InP-based laser diodes (LDs) on silicon helps fully exploit the potential of silicon photonics and benefits the application of dense wavelength division multiplexing (DWDM) for telecommunications. Here, we report the first InGaAs/InAlGaAs multi-quantum-well (MQW) lasers directly grown on on-axis V-grooved (001) Si by metalorganic chemical vapor deposition (MOCVD). Lasing near 1.5 μm was achieved for the first time with a threshold current density Jth = 3.3 kA/cm2 under pulsed current injection at room temperature. A high characteristic temperature T0 of 133 K in the range of 20°C-40°C was measured. These results demonstrate the potential of adopting this large-area InP-on-Si substrate for integrating diverse III-V laser diodes, photodetectors, and high-frequency and high-speed transistors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call