Abstract

Ultraviolet light-emitting diodes (LEDs) have been grown by metalorganic vapor phase epitaxy using AlN nucleation layers and thick n-type Al0.48Ga0.52N current spreading layers. The active region is composed of three Al0.36Ga0.64N quantum wells with Al0.48Ga0.52N barriers for emission at 290 nm. Devices were designed as bottom emitters and flip-chip bonded to thermally conductive submounts using an interdigitated contact geometry. The ratio of quantum well emission to 330 nm sub-band gap emission is as high as 125:1 for these LEDs. Output power as high as 1.34 mW at 300 mA under direct current operation has been demonstrated with a forward voltage of 9.4 V. A peak external quantum efficiency of 0.18% has been measured at an operating current of 55 mA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.