Abstract

Transparent and conductive ZnO:Al (AZO) thin films were prepared at room temperature by nonreactive DC magnetron sputtering from ceramic ZnO:Al targets. The effects of Al doping level and argon gas pressure on microstructure, growth behavior, resistivity and transmittance of AZO thin films were investigated. The experimental results show that AZO thin films change from polycrystalline to preferred c-axis-orientation just at high argon gas pressure. The resistivity of AZO films first decreases with the increase of Al content under 3 wt%, then increases when the Al content is over 3 wt%. The argon gas pressure also effect on the resistivity of AZO thin films due to the change of dispersion related the grain and crystal boundary. When the argon gas pressure from 0.6 to 3.0 Pa, the resistivity of AZO films decreases to a lowest resistivity of 1.4 × 10−3 Ω cm when the argon gas pressure is 1.5 Pa, then increases gently. The Al content and argon gas pressure had a little influence on transmittance, and the average optical transmittances of AZO thin films were from 86% to 90%, but the absorption edge has a blue shift with the increase of doping level and argon gas pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.