Abstract
Nanolasers that operate under the continuous-wave pump and are robust in diverse environments will make possible compact optoelectronic devices, biomedical imaging, and large-scale quantum photonics. However, current nanolasers require low temperatures or pulsed excitation because their small mode volumes severely limit gain relative to cavity loss. Here, I will present continuous-wave upconverting micro- and nanolasing at room temperature with record-low thresholds and high photostability. I will explore the future implications of such a low-threshold laser for optofluidics.
Highlights
Nanolasers that operate under the continuous-wave pump and are robust in diverse environments will make possible compact optoelectronic devices, biomedical imaging, and large-scale quantum photonics
Micron-sized lasers fabricated from upconverting nanoparticles (UCNP) coupled to whispering gallery mode (WGM) microresonators can exhibit continuous-wave anti-Stokes lasing useful for tracking cells, environmental sensing, and coherent stimulation of biological activity
We show upconverting microlasing with high photostability under continuous wave (CW) pump enabled by photonic microcavities
Summary
Nanolasers that operate under continuous-wave pump and are robust in diverse environments will make possible compact optoelectronic devices, biomedical imaging, and large-scale quantum photonics. I will present continuous-wave upconverting micro- and nanolasing at room temperature with record-low thresholds and high photostability. I will explore the future implications of such a low-threshold laser for optofluidics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.