Abstract
Chemoselective hydrogenation of C[double bond, length as m-dash]C, C[double bond, length as m-dash]O and C[double bond, length as m-dash]N bonds in α,β-unsaturated ketones, aldehydes and imines is accomplished at room temperature (27 °C) using a well-defined Mn(i) catalyst and 5.0 bar H2. Amongst the three mixed-donor Mn(i) complexes developed, κ3-(R2PN3NPyz)Mn(CO)2Br (R = Ph, iPr, t Bu); the t Bu-substituted complex ( tBu2PN3NPyz)Mn(CO)2Br shows exceptional chemoselective catalytic reduction of unsaturated bonds. This hydrogenation protocol tolerates a range of highly susceptible functionalities, such as halides (-F, -Cl, -Br, and -I), alkoxy and hydroxy, including hydrogen-sensitive moieties like acetyl, nitrile, nitro, epoxide, and unconjugated alkenyl and alkynyl groups. Additionally, the disclosed method applies to indole, pyrrole, furan, thiophene, and pyridine-containing unsaturated ketones leading to the corresponding saturated ketones. The C[double bond, length as m-dash]C bond is chemoselectively hydrogenated in α,β-unsaturated ketones, while the aldehyde's C[double bond, length as m-dash]O bond and imine's C[double bond, length as m-dash]N bond are preferentially reduced over the C[double bond, length as m-dash]C bond. A detailed mechanistic study highlighted the non-innocent behavior of the ligand in the ( tBu2PN3NPyz)Mn(i) complex and indicated a metal-ligand cooperative catalytic pathway. The molecular hydrogen (H2) acts as a hydride source, whereas MeOH provides a proton for hydrogenation. DFT energy calculations supported the facile progress of most catalytic steps, involving a crucial turnover-limiting H2 activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.