Abstract

We demonstrate an effective room-temperature chemical solution treatment, by using thioacetamide (S treatment) or thioacetamide-InCl3 (In-S treatment) solution, on Cu(In,Ga)Se2 (CIGSe) surface to engineer the ZnS(O,OH)/CIGSe interface and junction quality, leading to enhanced efficiency and minimized metastability of flexible solar cells. The control device without treatment reveals a relatively low efficiency of 8.15%, which is significantly improved to 9.74% by In-S treatment, and 10.39% by S treatment. Results of X-ray photoelectron spectroscopy suggest that S is incorporated into CIGSe surface forming CIGSSe by S treatment, whereas a thin In-S layer is formed on CIGSe surface by In-S treatment with reduced amount of S diffusing into CIGSe. PL spectra and TRPL lifetime further reveal that S incorporation into CIGS surface may substitute the OSe and/or directly occupy the vacant anion site (VSe), resulting in the effective passivation of the recombination centers at CIGSe surface. Moreover, reducing the concentrations of VSe may thereby decrease the density of (VCu-VSe) acceptors, which can minimize the metastability of ZnS(O,OH)/CIGSe solar cells. With S treatment, the light soaking (LS) time of ZnS(O,OH)/CIGSe device is reduced approximately to one-half of control one. Our approach can be potentially applied for alternative Cd-free buffer layers to achieve high efficiency and low metastability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.