Abstract

Quantum nano-structures are likely to become primary elements of future devices. However, there are a number of significant scientific challenges to real world applications of quantum devices. These include de-coherence that erodes operation of a quantum device and control issues. In nature, certain processes have been shown to use quantum mechanical processes for overcoming these barriers. One well-known example is the high energy transmission efficiency of photosynthetic light harvesting complexes. Utilizing such systems for fabricating nano-devices provides a new approach to creating self-assembled nano-energy guides. In this study, we use isolated phycocyanin (PC) proteins that can self-assemble into bundles of nanowires. We show two methods for controlling the organization of the bundles. These nanowires exhibit long range quantum energy transfer through hundreds of proteins. Such results provide new efficient building blocks for coupling to nano-devices, and shed light on distribution and the efficiency of energy transfer mechanisms in biological systems and its quantum nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.