Abstract
High-temperature scanning tunnelling microscopy, scanning tunnelling spectroscopy and current imaging tunnelling spectroscopy (HT-STM/STS/CITS) were used to study the topographic and electronic structures changes due to surface modifications of the TiO 2(1 1 0) surface caused by the STM tip. In situ high-temperature STM results showed that the created modifications were stable even at elevated temperatures. The STS/CITS results showed the presence of energy gap below the Fermi level on the untreated regions. The disappearance of energy gap below the Fermi level on the modifications created by the tip was observed. It is assumed that the presence of the tip can change the chemical stoichiometry of the surface from TiO 2− x towards Ti 2O 3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.