Abstract

Rooftop farming intends to diversify options for enhancing sustainability of cities. From a policy perspective, vegetable production and stormwater management are among important goals of rooftop farming for bolstering public funding and policy support. However, crops with high value and market demand like salad greens often have high irrigation requirements, which risks increasing drainage output of water and nutrients. To date, no studies have compared various soil mixes intended for rooftop farms in terms of stormwater retention, yield and quality of drought-sensitive crops constrained by regional precipitation patterns. Here, we report the results of a 5-week greenhouse experiment with leaf lettuce comparing 5 soil mixes made of coconut coir, biochar, and animal manure compost, plus a commercial rooftop farm soil using expanded shale, using an irrigation rate mimicking average growing season precipitation for New York City, USA. Three soil mixes had good yield, with water retention rates ranging up to 100%, while levels of drainage nitrogen output were less than 13% of current levels at the Brooklyn Grange, an operational rooftop farm in NYC. This finding suggests that improved soil design could enhance sustainability of rooftop farming in terms of water and nutrient management. Further research is needed for adjustment of nitrogen mineralization rates, long-term amendment plan, locally available waste inventory for substituting coconut coir, and leachate and rainwater harvesting systems.

Highlights

  • Agriculture is an emerging component of twenty first century urban planning to achieve diverse goals of sustainability

  • NYC’s new zoning code known as “Zone Green” allows modification of rooftops for enhancing urban sustainability such as photovoltaic power generation and vegetated roofs including rooftop farms. These sustainable building solutions will be mandated by the Climate Mobilization Act of NYC in 2024, which could offer further opportunities for rooftop farming (NYC DCP, 2012; New York City Council, 2019)

  • The objective of this study is to compare various soil mixes intended for rooftop farms in terms of stormwater retention and yield of droughtsensitive leafy greens, using an irrigation rate mimicking average growing season precipitation for New York City, USA

Read more

Summary

Introduction

Agriculture is an emerging component of twenty first century urban planning to achieve diverse goals of sustainability. Green roof technologies for growing ornamentals on urban rooftops have been applied to intensive vegetable production systems, known as rooftop farms, which are retrofitted to underutilized roofs, incentivized by funding subsidies and policy supports for enhancing the sustainability of Sustainable Rooftop Farm Soils built environments (Ackerman et al, 2013; Harada et al, 2017). NYC’s new zoning code known as “Zone Green” allows modification of rooftops for enhancing urban sustainability such as photovoltaic power generation and vegetated roofs including rooftop farms. These sustainable building solutions will be mandated by the Climate Mobilization Act of NYC in 2024, which could offer further opportunities for rooftop farming (NYC DCP, 2012; New York City Council, 2019)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call