Abstract

Recently, convolutional neural network-based methods have been used extensively for roof type classification on images taken from space. The most important problem with classification processes using these methods is that it requires a large amount of training data. Usually, one or a few images are enough for a human to recognise an object. The one-shot learning approach, like the human brain, aims to effect learning about object categories with just one or a few training examples per class, rather than using huge amounts of data. In this study, roof-type classification was carried out with a few training examples using the one-time learning approach and the so-called Siamese neural network method. The images used for training were artificially produced due to the difficulty of finding roof data. A data set consisting of real roof images was used for the test. The test and training data set consisted of three different types: flat, gable and hip. Finally, a convolutional neural network-based model and a Siamese neural network model were trained with the same data set and the test results were compared with each other. When testing the Siamese neural network model, which was trained with artificially produced images, with real roof images, an average classification success of 66% was achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.