Abstract

The Taylor Creek Rhyolite, a group of coeval, mid-Tertiary, silica-rich rhyolite lava domes in southwestern New Mexico, is notable for recording bulk-rock evidence of minor, yet easily measurable, contamination of its source magma reservoir resulting from assimilation of Proterozoic roof rock. Most of the evidence is recorded in trace element concentrations and 87Sr/86Sri ratios, which are far different in uncontaminated magma and roof rocks. Hornblende phenocrysts and biotite xenocrysts also record the effects of contamination. Electron microprobe analyses show that all hornblende grains are zoned to Mgrich and Fe- and Mn-poor rims. Rim MgO content is typically about 10 wt% greater than core MgO content. Other hornblende constituents are not measurably variable. Biotite xenocrysts, trace mineral constituents, are present only in the domes that are most contaminated, as judged by bulk-rock variations in trace element concentrations and 87Srl 86Sri. Biotite grains are invariably partly to almost completely altered. Microprobe analyses of the cores of the least-altered grains show that large variations in Fe and Mg and that biotite contains 2-20 times as much Mg as fresh biotite phenocrysts in other silica-rich rhyolite lavas. Fe and Mg are negatively correlated in hornblende and biotite, consistent with mixing two end-member compositions. The mass ratio of contaminant to magma was probably less than 1:100, and major constituents, including AI, were not measurably affectedin hornblende. Al-in-hornblende barometry yields essentially a constant calculated pressure of about 1.5 kbar, which is consistent with the interpretation that all contamination occurred in a boundary zone about 300 m thick at the top of the magma reservoir.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.