Abstract

In mining excavation, the roof bending subsidence of gob-side entry driving heading adjacent to the advancing working face (HAWF) can be considerable. Influenced by the original rock pressure, the front and lateral abutment pressure of the adjacent working face, and the front abutment pressure of the current working face, the support body can easily fail, leading to serious instability of the rock mass surrounding the tunnel. To study the stress state and the deformation failure mechanism of the HAWF roof structure, we use on-site survey data, numerical simulation, and theoretical calculations to fit the spatial distribution law of mining abutment pressure piecewise, and establish a dynamic mechanical model of the roof structure. We then propose a roof failure criterion and examine the roof flexure deformation behavioral pattern. We found that the central part of the roof is the main point that controls the surrounding rock. To prevent the deformation and collapse of the roof and rock surrounding the tunnel, we propose techniques that can be applied to HAWF gob-side entry driving, including setting the coal pillar width, the driving stop and restart timing, and other control concepts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.