7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1093/gbe/evu204
Copy DOIJournal: Genome Biology and Evolution | Publication Date: Sep 14, 2014 |
Citations: 64 | License type: cc-by-nc |
Rolling-circle transposons (Helitrons) are a newly discovered group of mobile DNA widespread in plant and invertebrate genomes but limited to the bat family Vespertilionidae among mammals. Little is known about the long-term impact of Helitron activity because the genomes where Helitron activity has been extensively studied are predominated by young families. Here, we report a comprehensive catalog of vetted Helitrons from the 7× Myotis lucifugus genome assembly. To estimate the timing of transposition, we scored presence/absence across related vespertilionid genome sequences with estimated divergence times. This analysis revealed that the Helibat family has been a persistent source of genomic innovation throughout the vespertilionid diversification from approximately 30–36 Ma to as recently as approximately 1.8–6 Ma. This is the first report of persistent Helitron transposition over an extended evolutionary timeframe. These findings illustrate that the pattern of Helitron activity is akin to the vertical persistence of LINE retrotransposons in primates and other mammalian lineages. Like retrotransposition in primates, rolling-circle transposition has generated lineage-specific variation and accounts for approximately 110 Mb, approximately 6% of the genome of M. lucifugus. The Helitrons carry a heterogeneous assortment of host sequence including retroposed messenger RNAs, retrotransposons, DNA transposons, as well as introns, exons and regulatory regions (promoters, 5′-untranslated regions [UTRs], and 3′-UTRs) of which some are evolving in a pattern suggestive of purifying selection. Evidence that Helitrons have contributed putative promoters, exons, splice sites, polyadenylation sites, and microRNA-binding sites to transcripts otherwise conserved across mammals is presented, and the implication of Helitron activity to innovation in these unique mammals is discussed.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.