Abstract

Abstract The Weber Deep—a 7.2-km-deep forearc basin within the tightly curved Banda arc of eastern Indonesia—is the deepest point of the Earth’s oceans not within a trench. Several models have been proposed to explain the tectonic evolution of the Banda arc in the context of the ongoing (ca. 23 Ma–present) Australia–Southeast Asia collision, but no model explicitly accounts for how the Weber Deep achieved its anomalous depth. Here we propose that the Weber Deep formed by forearc extension driven by eastward subduction rollback. Substantial lithospheric extension in the upper plate was accommodated by a major, previously unidentified, low-angle normal fault system we name the “Banda detachment.” High-resolution bathymetry data reveal that the Banda detachment is exposed underwater over much of its 120 km down-dip and 450 km lateral extent, having produced the largest bathymetric expression of any fault discernable in the world’s oceans. The Banda arc is a modern analogue for highly extended terranes preserved in the many regions that may similarly have “rolled open” behind migrating subduction zones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.