Abstract
316L stainless steel plates of 5-mm thickness, normalized at 900 °C, were cold rolled with different reductions and number of passes using rolls with three different surface roughnesses: grain heights of 0.17 and 0.33 mm and rhomboid-shaped grains of 1.5-mm height. Subsequently, the rolled samples were annealed at 275 °C for 1 h in an effort to achieve superficial nanograins. The plates laminated using low-roughness rolls had continuous superficial microcrystallization when they were rolled for at least 26 passes. For samples made with rougher rolls, the recrystallized superficial grains formed on the surface (sized ~10-15 μm) were smaller than those below the surface; this behavior was caused by the major deformation induced by repeated indentations. The superficial recrystallization of the sample also tended to be more continuous for higher number of passes; micrographs of the penetration profiles of indentation in the samples rolled with high-roughness rolls revealed that a sample rolled 24 times had not yet reached the steady surface topology. As a conclusion, in order to successfully form superficial nanograins, very low-roughness rolls must be used as well as a small absolute reduction per pass, followed by annealing. These rolling conditions generate a continuous field of highly superficial deformations, which act as nucleation centers for nanograins during annealing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.