Abstract
Key messageForest tree breeding must undergo significant revisions to adapt to the evolving challenges posed by climate change. Addressing the shifts in environmental conditions requires a comprehensive multidisciplinary approach that includes theoretical work and practical application. Specifically, there is a need to focus on developing new breeding strategies that are theoretically sound and practically feasible, considering the economic constraints of actual tree breeding programs. We present a novel concept utilizing genetic evaluation of multiple traits in forest stands of successive ages across wide ecological ranges. Incorporating genomics allows for detailed genetic evaluation, making use of high-density SNP markers and sophisticated algorithms like GBLUP for genetic parameter estimates. High-throughput phenotyping is conducted using drone-borne lidar technology to capture tree height and survival data across various forest stands. Assisted migration is considered to strategically position genotypes across predicted environmental climatic gradients, thereby accommodating the dynamic nature of ecological shifts. Mathematical optimization acts as an essential component for logistics, guiding the spatial allocation and timely substitution of genotypes to ensure a continually adaptive breeding program. The concept replaces distinct breeding cycles with continuous evaluation and selection, enhancing the rate of genetic response over time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.