Abstract
Thin wall ductile iron castings are being used in the industry as a way to improve the strength to weight ratio of machine parts. The high cooling rate, suffered by thin wall parts during the solidification process, promotes several microstructural changes, such as, carbide precipitation and a noticeable nodule count increment. The present work, studies the effect that the increase in nodule count has on the rolling contact fatigue resistance of ductile iron with different matrix microstructures. Ductile cast iron test samples, with nodule counts ranging between 150 and 1400 nod/mm 2 were obtained. The samples were then heat treated in order to obtain three sets of different ADI grades and also a quenched and tempered set. The rolling contact fatigue properties were evaluated by using a flat washer type test rig. Different relations of the contact area versus the nodule size were obtained by using three different counterparts. The results show that an increase in the nodule count promotes a noticeable increase in the rolling contact fatigue life, being more important for the quenched and tempered samples. The relation between contact area surface and nodule size was the main variable influencing the rolling contact fatigue life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.