Abstract

The mitochondrial genomes of higher plants are larger and more complex than those of all other groups of organisms. We have studied the in vivo replication of chromosomal and plasmid mitochondrial DNAs prepared from a suspension culture and whole plants of the dicotyledonous higher plant Chenopodium album (L.). Electron microscopic studies revealed sigma-shaped, linear, and open circular molecules (subgenomic circles) of variable size as well as a minicircular plasmid of 1.3 kb (mp1). The distribution of single-stranded mitochondrial DNA in the sigma structures and the detection of entirely single-stranded molecules indicate a rolling-circle type of replication of plasmid mp1 and subgenomic circles. About half of the sigma-like molecules had tails exceeding the lengths of the corresponding circle, suggesting the formation of concatemers. Two replication origins (nicking sites) could be identified on mpl by electron microscopy and by a new approach based on the mapping of restriction fragments representing the identical 5' ends of the tails of sigma-like molecules. These data provide, for the first time, evidence for a rolling-circle mode of replication in the mitochondria of higher plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.