Abstract

It is usually difficult to extract weak fault features from rolling bearing vibration signals under noise pollution. To address this problem, a fault feature extraction approach for rolling bearings using improved singular spectrum decomposition (SSD) and a singular-value energy autocorrelation coefficient spectrum (SVEACS) is proposed. Firstly, to facilitate the determination of the optimal modal parameters in the SSD algorithm, the number of SSD layers is adaptively determined using an improved SSD algorithm based on permutation entropy. Then, the optimal modal components are selected, and the proposed SVEACS is used to determine the order of singular-value noise reduction. Finally, envelope analysis is used to extract the accurate shock characteristics of the denoised signal. The results of the experiments on simulated and real signals indicate that the proposed method can effectively extract the weak characteristics of the vibration signal under strong noise, and accurately diagnose the fault of a rolling bearing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.