Abstract
Vibration signal was a carrier of fault features of the wind turbine transmission system, it can reflect most of the fault information of the wind turbine transmission system. According to the frequency domain features of the roller bearing fault, wavelet packet transform for feature extraction was proposed as the characteristics of wind turbines in the presence of a large number of transient and non-stationary signals. The characteristics of wavelet packet was analyzed, combined with the wind turbines in the rolling bearing fault characteristic vibration extraction methods, the rolling bearing fault diagnosis was realized through the wavelet packet decomposition and reconstruction, the procedure was given. The simulation result shows that this application can reflect relationship of the failure characteristics and frequency domain feature vectors, also the nonlinear mapping ability of neural networks was played and the fault diagnosis capability enhanced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.